练习 14.1

T1

求下列各级数的和:

(1) \(\displaystyle\sum\limits_{n=1}^{\infty} \dfrac{n}{(n+1)(n+2)(n+3)}\)

(2) \(\displaystyle\sum\limits_{n=1}^{\infty} \dfrac{2n-1}{2^{n}}\)

(3) \(\displaystyle\sum\limits_{n=1}^{\infty} (\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n})\)

仅给出思路,答案的求和公式可以代值验证:

(1) 考虑裂项:

\[ \frac{n}{(n+1)(n+2)(n+3)} = \frac{1}{2} \left[\frac{1}{(n+1)\left(n+2\right)}- \frac{1}{(n+2)(n+3)} \right] \]

(2) 考虑错位相减,或者按照如下形式裂项:

\[ \frac{2n-1}{2^{n}} = \frac{-2n-3}{2^{n+1}} - \frac{-2n-1}{2^{n}} \]

(3) 令 \(A_{n} = \sqrt{n+2}-\sqrt{n+1}\) ,则该级数即为 \(\lim_{n\to \infty}\limits A_{n} -A_{1}\) .

T2

\(a_{n}\leqslant c_{n} \leqslant b_{n}\) ,且级数 \(\sum\limits_{n=1}^{\infty} a_{n}\)\(\sum\limits_{n=1}^{\infty} b_{n}\) 均收敛,求证:\(\sum\limits_{n=1}^{\infty} c_{n}\) 收敛.

考虑 Cauchy 收敛准则,令相应的部分和为 \(A_{n},B_{n},C_{n}\) ,根据题意有

\[ A_{n}-A_{m} \leqslant C_{n}-C_{m} \leqslant B_{n}-B_{m}\quad (n > m) \]

\(m,n\to \infty\)\(|C_{n}-C_{m}|\to 0\) ,根据数项级数的 Cauchy 收敛准则可知该级数收敛. \(\square\)

Remark.

注意,本题结论很有意思,因为它比极限的两边夹更好用:只需要两边的级数收敛而不需要收敛到一样的值.

评论