练习 14.3

T1

\(\alpha>0\) ,求证:
$$ \sum\limits_{n=1}^{\infty} \left|\dfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}\right| $$
收敛.

考虑 Raabe 判别法:

\[ \frac{u_{n}}{u_{n+1}} = n\frac{\alpha+1}{n-\alpha} \]

其中 \(n\) 取到大于 \([\alpha]\) 的值,此时有

\[ \lim_{n\to \infty} n \left(\frac{u_{n}}{u_{n+1}}-1\right) = \lim_{n\to \infty} n\frac{\alpha+1}{n-\alpha} = \alpha+1 >1 \]

根据 Raabe 判别法可知该级数收敛. \(\square\)

T2

讨论下列级数的收敛性:

(1) \(\displaystyle\sum\limits_{n=1}^{\infty} \dfrac{\sqrt{n!}}{(a+1)(a+\sqrt{2})\cdots (a+\sqrt{n})},a>0\).

(2) \(\displaystyle\sum\limits_{n=1}^{\infty} \dfrac{n!n^{-p}}{q(q+1)\cdots(q+n)},p>0,q>0\).

(1) 考虑

\[ n\left(\dfrac{u_{n}}{u_{n+1}}-1\right) = \frac{an}{\sqrt{n+1}}\to +\infty \]

由 Raabe 判别法可知该级数收敛.

(2) 先利用 Raabe 判别法,计算有

\[ \begin{aligned} \frac{u_{n}}{u_{n+1}} & = (q+n+1) \dfrac{(n+1)^{p}}{(n+1)n^{p}} \\ & = \left(1+\frac{1}{n}\right)^{p} + \frac{q(n+1)^{p-1}}{n^{p}} \\ \end{aligned}\tag{2.1} \]

那么相应的

\[ \begin{aligned} \lim_{n\to \infty}n\left(\frac{u_{n}}{u_{n+1}}-1\right) & = \lim_{n\to \infty}n\left[\left(1+\frac{1}{n}\right)^{p} + \frac{q(n+1)^{p-1}}{n^{p}}-1\right] \\ & = \lim_{n\to \infty} n\left[\left(1+ \frac{1}{n}\right)^{p}-1\right] + \lim_{n\to \infty} q\cdot\dfrac{(n+1)^{p-1}}{n^{p-1}} \\ & = p+q \end{aligned} \]

因此根据 Raabe 判别法,当 \(p+q<1\) 时级数发散,\(p+q>1\) 时级数收敛,那么最后仅需讨论 \(p+q=1\) 时的敛散性.

\(p+q=1\) 时,对 (2.1) 式利用 Newton 二项式展开:

\[ \begin{aligned} (2.1) & = \left(1+\dfrac{1-p}{n+1}\right) \left[1+ \frac{p}{n}+ \frac{p(p-1)}{2n^{2}}+ o\left(\frac{1}{n^{2}}\right)\right] \\ & = 1+ \frac{1-p}{n+1} + \frac{p}{n} + \dfrac{p(1+p)}{n(n+1)} + \frac{p(p-1)}{2n^{2}} + o\left(\frac{1}{n^{2}}\right) \end{aligned} \]

利用 Gauss 判别法即有该级数发散. 因此,该级数收敛当且仅当 \(p+q >1\) . \(\square\)

Remark.

具体的正项级数收敛性问题:比值相关判别法的进化过程是:D'Alembert -> Raabe -> Gauss -> Bertrand.

比值所能知道的:

\[ \frac{u_{n}}{u_{n+1}} = a_{0} + \frac{a_{1}}{n} + \frac{a_{2}}{n(\ln n)} + \frac{a_{3}}{n\ln n\ln\ln n} + \cdots \]

评论